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A B S T R A C T

Vessel trajectory prediction using AIS data plays an important role in maritime navigation warning and safety.
A key aspect of trajectory prediction is multimodal because of the uncertainty of vessel behavior. However,
complex trajectory modes are difficult to be learned from low-dimensional AIS data with noise. In this paper,
we propose a new method for multimodal vessel trajectory prediction, called Multimodal Vessel Trajectory
Prediction via Modes Distribution Modeling (VT-MDM). This approach addresses the above challenges by
introducing additional hiding regimes to characterize complex trajectory modes independently. Specifically,
we introduce an additional latent vector as the encoding of the trajectory modes, which is randomly sampled
from a multivariate Gaussian distribution to generate multiple predicted trajectories. To enable this Gaussian
distribution for capturing the vessel trajectory modes, we use adversarial learning to enforce all its realizations
to generate realistic predicted trajectories. Furthermore, we also encourage the mapping between the latent
vectors of the modes and the predicted trajectories to be invertible and smooth, which prompts VT-MDM to
produce truly and gradually multimodal predicted trajectories. Experiments on the real AIS dataset show that
our method is capable of multimodal trajectory prediction with high accuracy.
1. Introduction

The maritime transportation environment has become increasingly
complex in the past few decades, with the rapid development of the ves-
sel industry. This complexity has led to an increased risk of collisions,
which have caused casualties, environmental damage, and substantial
economic losses. In light of this, it is important for the maritime indus-
try, risk assessment, and traffic management to fully utilize maritime
surveillance data for vessel trajectory prediction (Ozbas, 2013; Rajabi
et al., 2018). Automatic Identification System (AIS) is now widely used
in maritime traffic due to its unprecedented high resolution and real-
time accuracy in analyzing vessel behavior (Mao et al., 2018). The
International Maritime Organization (IMO) adopted the AIS naviga-
tion system in 2000 for the purposes of traffic control and coastal
surveillance. AIS can provide static data (e.g., IMO number, name, type,
and length, etc.), dynamic navigation data (e.g., longitude, latitude,
speed, and course, etc.), voyage-related data, as well as short safety
messages (Robards et al., 2016). Additionally, it enables automatic
and continuous data exchange within the range of vessels and be-
tween vessels and coastal authorities (Goudossis and Katsikas, 2019).
For maritime traffic monitoring, AIS has distinguished itself among
the existing self-reporting positioning systems as a reliable source of
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information regarding spatial coverage, vessel coverage, and frequency
of information transmission. As a result, numerous studies have been
conducted to predict the future trajectories of vessels using historical
AIS data, thereby improving the management of marine traffic and
enhancing the safety of marine navigation (Hexeberg et al., 2017; Suo
et al., 2020).

Multimodality A key aspect of vessel trajectory prediction is the
multimodality of behavior (Huang et al., 2022). Due to the natu-
ral uncertainty in the behavior of vessels, there are multiple pos-
sibilities for their future trajectories. Specifically, vessel behavior is
highly dependent on the current environmental conditions, such as sea
breezes, waves, and currents, as well as the decisions made by the
navigator, which can be influenced by their physical and psychological
state (Chroni et al., 2015). In summary, the vessel may behave dif-
ferently in future actions, such as accelerating, decelerating, changing
direction, etc. In such scenarios, the traditional vessel trajectory pre-
diction techniques that produce a single deterministic trajectory have
a low practical application value. As an illustration, Fig. 1 depicts a
simulation scenario in which the vessel exhibits different behaviors.
Firstly, Figs. 1(a) and 1(b) show the vessels traveling in different
directions in an encounter situation. The green vessel does not collide
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with the blue vessel under the original direction of travel, but collides
when it changes its steering angle. Secondly, Figs. 1(c) and 1(d) show
the vessels traveling through an intersection at different speeds. At their
initial speeds, the two vessels can avoid one another perfectly, but
they collide when the green vessel speeds up. This example highlights
that the deterministic method cannot provide information about the
potential future trajectory of the green vessel, which might result in
a collision. Therefore, it is necessary to consider the multimodality of
vessel trajectory, which can reduce collision risk. Some preliminary
efforts (Murray and Perera, 2020; Sørensen et al., 2022) have been
made on this issue, most of which attempt to mine trajectory modes
from AIS data and use them as a priori knowledge for subsequent
multimodal vessel trajectory prediction.

Motivation However, complex trajectory modes are difficult to
be learned from low-dimensional AIS data with noise. On the one
hand, AIS messages are usually represented using a low-dimensional
vector (e.g., the 5-D real-valued vector consisting of timestamps, lat-
itude, longitude, speed, and course), which is generated by multiple
explanatory factors jointly (Nguyen et al., 2018, 2021). Since the
mode factor is tangled with other explanatory factors, disentangling the
underlying trajectory modes from low-dimensional vectors is difficult
for the model. On the other hand, AIS data is frequently inundated
with noise due to inevitable errors, such as environmental disturbances,
system failures, and human mistakes (Harati-Mokhtari et al., 2007;
Zhang et al., 2018). These noises make it even more difficult for the
model to learn the trajectory modes from the AIS data. To address
the above challenge, we revisit the multimodal trajectory prediction
problem from a new perspective, i.e., by introducing additional hiding
regimes to characterize the complex trajectory modes independently. In
this way, we eliminate the necessity to equip the model with the ability
to distinguish mode factors from AIS data.

Motivated by representation learning (Bengio et al., 2013), we
propose Multimodal V essel T rajectory Prediction via Modes Distribution
Modeling (VT-MDM) in this paper, which directly models the dis-
tribution of trajectory modes for multimodal trajectory prediction.
Specifically, we introduce an additional latent vector to encode the
trajectory modes, which is randomly sampled from a Gaussian distribu-
tion to generate multiple predicted trajectories. To enable this Gaussian
distribution to capture the vessel trajectory modes, we use adversarial
learning to enforce all of its realizations to generate realistic predicted
trajectories. Furthermore, we encourage the mapping between the la-
tent vectors of the modes and the predicted trajectories to be invertible,
allowing the Gaussian distribution to characterize the truly multimodal
distribution instead of the single mode with high probability. Con-
sidering that the vessel behavior will not change abruptly, we also
encourage the above mapping to be smooth so that the transition be-
tween trajectory modes involving the Gaussian distribution is gradual.
We summarize our main contributions as follows:

1. We propose a method to directly model the distribution of trajec-
tory modes, called VT-MDM, aiming to address the multimodal
trajectory prediction problem using historical AIS data.

2. Our method uses adversarial learning to enable an additional
Gaussian distribution to capture the vessel’s trajectory modes.
We emphasize that VT-MDM does not need to disentangle the
mode factor from the low-dimensional AIS data, and that the
mode space is continuous.

3. The proposed method attempts to create an invertible and
smooth mapping between the latent vectors of the modes and
the predicted trajectories, which aids in truly and gradually
multimodal trajectory prediction. As far as we know, this is the
first time that the truly and gradually multimodal distribution
has been concerned.

4. We validate the effectiveness of the proposed method using the
real AIS dataset. The results present that VT-MDM achieves truly
and gradually multimodal trajectory prediction while maintain-
ing high prediction accuracy.
2

Fig. 1. The simulation scenario.
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Organization The paper’s remainder is structured as follows.
Firstly, Section 2 provides an overview of related work and analyses the
limitations of existing models for AIS trajectory prediction. Secondly,
Section 3 presents background information about the least squares
GANs and seq2seq model. The details of the proposed approach are
presented in Section 4. In Section 5, we perform a thorough experimen-
tal exploration of the proposed method’s performance on the real AIS
dataset. Finally, conclusions and future work are discussed in Section 6.

2. Related work

2.1. AIS based vessel trajectory prediction

AIS data provide insights into the historical behavior of vessels
in given regions, which can be used for maritime traffic data min-
ing and prediction techniques. Predicting the vessel’s trajectory is a
process of using historical AIS data around the expected position of
the vessel to predict its location at one or more future time points.
Due to the limitations of AIS technology, such as highly irregular
temporal sampling, poor data quality and completeness, and various
behaviors exhibited by vessels (depending on, for example, their size,
navigation status, traffic rules, etc.), vessel trajectory prediction is still
a challenging problem. Currently, several results have been achieved
in the research of vessel trajectory prediction based on AIS data. Based
on the basic implementation mechanisms of various approaches, they
can be broadly classified into two categories: Kinematic model-based
approach and Deep learning based approach.

2.1.1. Kinematic model-based approach
Early approaches to vessel trajectory prediction rely on physical

models of vessel movement. Sutulo et al. (2002) proposed a dynamic
mathematical model for vessel trajectory prediction based on the ves-
sel’s current speed and acceleration. The model also considers trajec-
tory prediction in maneuvers involving changing course. Perera et al.
(2012) proposed an Extended Kalman Filter (EKF)-based method for
predicting vessel trajectories by adding estimated noise to the kine-
matic model. For underdriven surface vessels, Assaf et al. (2020) uses
the Unscented Kalman Filter (UKF) to predict their trajectory posi-
tion. Perera et al. (2010) proposed an EKF to estimate the vessel’s state,
which was then used to predict its trajectory. However, these methods
have the following drawbacks. First, developing a precise mathematical
model for vessel trajectories, which accounts for dynamic factors like
wind and current, can be challenging. Second, kinematic models can be
unreliable for longer prediction ranges, as vessel trajectories are often
highly non-linear due to navigator decisions. Most kinematic models
have difficulty in modeling continuous motion behavior, which can
lead to unsatisfactory multi-step continuous prediction results.

2.1.2. Deep learning based approach
In the majority of cases, one might easily surpass the boundaries

of manually created kinematic models. This has sparked research into
more adaptable, data-driven statistical methods. The widespread use
of neural networks has brought vessel trajectory prediction to a new
stage. Gao et al. (2021) enable multi-step prediction of vessel trajec-
tories by combining TPNet and long and short-term memory networks
(LSTM). However, since the hyperparameters of the neural networks
are difficult to obtain the optimal solution manually, Qian et al. (2022)
suggested using the genetic algorithm (GA) to optimize the key hy-
perparameters of the LSTM network, which effectively improves the
accuracy and speed of trajectory prediction. Murray and Perera (2021)
pointed out that decomposing the historical vessel behavior in a given
geographical area into clusters with similar behavioral characteris-
tics in advance can effectively improve the prediction accuracy. Park
et al. (2021) applied a spectral clustering approach to the similarity
measured by the longest common subsequence (LCSS) distance. Based
on the clustering results, a vessel trajectory prediction model was
3

developed using bidirectional long and short-term memory (Bi-LSTM).
Recently, attention networks have also been used extensively for vessel
trajectory prediction, yielding promising results. Capobianco et al.
(2021b) proposed an attention-based mechanism for aggregation layers
to learn the relation between the observed and the predicted kinematics
states while preserving the spatio-temporal structure of the input. Fur-
thermore, to model the prediction uncertainty of future estimates, they
extend the deep learning framework for trajectory prediction tasks by
generating the corresponding prediction uncertainty via Bayesian mod-
eling of epistemic and aleatoric uncertainties (Capobianco et al., 2021a,
2022). However, traditional deep learning approaches use the Eu-
clidean distance between the ground truth and the predicted trajectory
to train the model, causing the model to learn the ‘‘average behavior’’
instead of the actual trajectory. Gupta et al. (2018) propose using
generative adversarial networks for pedestrian trajectory prediction
and find that it can better generate more realistic trajectories.

2.2. Multimodal vessel trajectory prediction

Some scholars have also done corresponding work on multimodal
trajectory prediction of vessels. Rong et al. (2019) proposed a proba-
bilistic trajectory prediction model based on the Gaussian process to
describe the uncertainty of the future vessel position through a con-
tinuous probability distribution. However, their model only considered
the uncertainty in the lateral and longitudinal motion of the vessel,
which may limit its ability to capture the diversity of vessel trajec-
tory modes. Sørensen et al. (2022) modeled vessel trajectories using
an eleven-dimensional Gaussian distribution and introduced a hybrid
density network that predicts probabilistic future positions of the vessel
and generates multiple predicted trajectories through multiple sam-
pling. Murray and Perera (2020) estimated the distribution of potential
possible future vessel trajectories by training a dual linear autoencoder,
and by sampling from this distribution, multiple trajectories can be
predicted. All the above methods attempt to mine vessel trajectory
modes directly from AIS data and incorporate them as prior knowledge
into later predictions. Nguyen and Fablet (2021) extended the original
AIS data into a high-dimensional space and transformed the regression
problem into a classification problem using a transformer to extract
relevant information from the historical AIS data of the target vessel to
predict the future position distribution. However, higher dimensional
representations may result in additional noise. As discussed earlier,
complex modes are difficult to learn from low-dimensional AIS data
with noise. Thus, existing methods invariably make a strong assumption
that the modes are discrete. We believe this leads to a loss of infor-
mation, as the modes should be described using a continuous space.
Lastly, none of the above works considered the gradualness problem of
multimodal trajectory prediction.

3. Preliminaries

3.1. Least square GANs

Generative adversarial networks (GANs) (Goodfellow et al., 2020)
have been extensively studied in the past few years. A GANs is a
generative model that consists of two deep neural networks: one for
generating fake samples and another for discriminating between real
and fake samples, which compete with each other until convergence.

The GANs are implemented as follows. The user provides some
training samples as real samples {𝑥𝑖|𝑖 = 1, 2,… , 𝑚}, called the sample
distribution 𝑝𝑟(𝑥). Two deep neural networks, called discriminator 𝐷
and generator 𝐺, are constructed. We randomly sample from distribu-
tion 𝑧 ∼ 𝑝𝑧(𝑧) and feed it to generator 𝐺 to generate samples 𝐺(𝑧),
which essentially maps the distribution 𝑧 ∼ 𝑝𝑧(𝑧) to the distribution
𝑝𝑔(𝑥) (called the generating distribution). The input to 𝐷(𝑥) is the
ample 𝑥, which may come from either the sample distribution or the
enerating distribution. And the output of 𝐷(𝑥) is a scalar representing
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Fig. 2. The seq2seq model.

he probability that 𝑥 is obtained from the sample distribution. We train
𝐷(𝑥) to maximize the probability of assigning the correct labels to the
real and generated samples and train 𝐺(𝑧) to minimize this probability.
𝐷(𝑥) and 𝐺(𝑧) are trained alternately until a Nash equilibrium is
reached. In other words, the optimization objective of the GANs is as
follows:
max
𝐷

GAN(𝐷) = E𝑥∼𝑝𝑟(𝑥)[log𝐷(𝑥)]

+E𝑧∼𝑝𝑧(𝑧)[log(1 −𝐷(𝐺(𝑧)))]
(1)

min
𝐺

GAN(𝐺) = E𝑧∼𝑝𝑧(𝑧)[log(1 −𝐷(𝐺(𝑧)))], (2)

where real sample is labeled 1 and fake sample is labeled 0. The
discriminator of regular GANs performs 0/1 classification of real and
fake samples, and uses binary cross-entropy function for training. This
makes GANs extremely unstable during the training process (Arjovsky
and Bottou, 2017). To solve this problem, Mao et al. (2017) proposed
the Least Squares Generative Adversarial Networks (LSGANs), in which
the discriminator is trained using a least-squares loss function. The
optimization objective of LSGANs is defined as:

min
𝐷

LSGAN(𝐷) = E𝑥∼𝑝𝑟(𝑥)
[

(𝐷(𝑥) − 1)2
]

+E𝑧∼𝑝𝑧(𝑧)
[

𝐷2(𝐺(𝑧))
] (3)

min
𝐺

LSGAN(𝐺) = E𝑧∼𝑝𝑧(𝑧)
[

(𝐷(𝐺(𝑧)) − 𝛾)2
]

, (4)

where 𝛾 is the probability that the generator wants to fool the dis-
criminator. In the trajectory prediction task, 𝛾 is generally taken to
be 1.

3.2. Seq2seq model

Standard recurrent neural networks (RNNs) can be effectively used
in tasks where the alignment between inputs and outputs is known in
advance. Yet, there is little research on how to apply it to tasks where
the input–output alignment is unclear and complex. In response Cho
et al. (2014) first proposed a novel neural network called RNN encoder–
decoder, which allows variable length input and output sequences,
addressing the shortcomings of standard RNNs. And then Sutskever
et al. (2014) proposed a sequence-to-sequence (seq2seq) model to
improve it. The seq2seq model is an end-to-end network model that
can be trained to learn arbitrary temporal structures in input sequences
and has achieved great success in machine translation, speech recog-
nition, text summarization, question-and-answer systems, and other
fields (Zhang et al., 2019; Ma et al., 2018; Ghazvininejad et al., 2018).

The seq2seq model contains two main components, an encoder, and
a decoder. The encoder learns the input and encodes it into a low-
dimensional latent vector, which is subsequently passed to the decoder,
which outputs it by learning the latent vector. The decoder has two
4

learning methods. The first is that the potential vector only participates
in the initial operation, and the second is that the potential vector
participates in each subsequent decoding operation. Fig. 2 illustrates
case one.

The seq2seq model uses the idea of maximizing the likelihood
function for the joint training of the encoder and decoder, which is
represented by the following problem.

max
𝜃

1
𝑁

𝑁
∑

𝑖=1
log 𝑝𝜃

(

𝑦𝑖 ∣ 𝑥𝑖
)

, (5)

where 𝜃 denotes the model parameters, 𝑁 is the number of samples
in the training set, 𝑥𝑖 and 𝑦𝑖 are the input and output sequences,
respectively.

4. Methodology

In this section, we present a detailed description of the proposed
method’s implementation. The first part provides the problem defini-
tion (Section 4.1). Then, the framework of the proposed
method (Section 4.2) as well as the architecture of the model used
(Section 4.3) are presented. Finally, the loss functions used in the
proposed method are summarized (Section 4.4)

4.1. Problem definition

We assume that the N-selected historical vessel trajectories are
defined as:

𝛥𝑃𝑓,𝑖 = {(𝛥𝑙𝑜𝑛𝑡𝑖, 𝛥𝑙𝑎𝑡
𝑡
𝑖) ∈ R2

|𝑡 = 1,… , 𝑡𝑜𝑏𝑠}, (6)

where 𝑖 is the index of the vessel for ∀𝑖 ∈ {1,… , 𝑁}, and 𝛥𝑙𝑜𝑛𝑡𝑖 and
𝛥𝑙𝑎𝑡𝑡𝑖 denote the relative longitude and relative latitude, respectively.
To help VT-MDM learn the distribution of the actual vessel trajectory
modes more accurately, the model uses asymmetric input and output.
Therefore, the model uses the initial state of the vessel as input, which
is defined as:

𝑠𝑖 = {(𝛥𝑃𝑓,𝑖, 𝑣
𝑡
𝑖, 𝑐

𝑡
𝑖 , 𝛥𝑇

𝑡
𝑠,𝑖) ∈ R4

|𝑡 = 1,… , 𝑡𝑜𝑏𝑠}, (7)

where 𝑣𝑡𝑖 is the speed over ground, 𝑐𝑡𝑖 is the course over ground, and
𝛥𝑇 𝑡

𝑠,𝑖 represents the time difference between two adjacent feature points
of the vessel. And the predicted trajectory can be defined as:

𝛥𝑃𝑏,𝑖 = {(𝛥𝑙𝑜𝑛𝑡𝑖, 𝛥𝑙𝑎𝑡
𝑡
𝑖) ∈ R2

|𝑡 = 𝑡𝑜𝑏𝑠+1,… , 𝑡𝑝𝑟𝑒𝑑}. (8)

And the future trajectory (ground truth) can be defined similarly as:

𝛥𝑃𝑏,𝑖 = {(𝛥𝑙𝑜𝑛𝑡𝑖, 𝛥𝑙𝑎𝑡
𝑡
𝑖) ∈ R2

|𝑡 = 𝑡𝑜𝑏𝑠+1,… , 𝑡𝑝𝑟𝑒𝑑}. (9)

4.2. Overall framework

In this subsection, we outline the framework of the proposed
method, VT-MDM. Our goal is to achieve multimodal trajectory pre-
diction by modeling the distribution of trajectory modes. We first use
adversarial learning to enable an additional Gaussian distribution that
captures the vessel trajectory modes. Then, we use a reconstruction
task to construct an invertible mapping between the latent vectors
of the modes and the predicted trajectories. Finally, we use global
regularization and local interpolation to encourage the above mapping
to be smooth as well. The overall framework of VT-MDM is shown in
Fig. 3.

Modeling distribution To avoid learning complex trajectory modes
from low-dimensional AIS data with noise, we introduce an additional
hidden regime to model the trajectory modes’ distribution directly. The
distribution of trajectory modes can be regarded as the root of the
uncertainty in the vessel behavior, which governs the vessel’s move-
ment. For this purpose, we introduce an additional latent vector 𝑧 ∈ R𝑛

as the encoding of the trajectory modes, which randomly sampled
from a multivariate Gaussian distribution  (𝟎, 𝟏). Firstly, we input

the latent vector 𝑧 and the historical vessel trajectories 𝑜𝑏𝑠_𝑡𝑟𝑎𝑗 into
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Fig. 3. The framework of VT-MDM.
he generator 𝐺 to produce the predicted trajectories 𝑝𝑟𝑒𝑑_𝑡𝑟𝑎𝑗. Next,
we feed the generated predicted trajectories 𝑝𝑟𝑒𝑑_𝑡𝑟𝑎𝑗 and the ground
truth 𝑔𝑡_𝑡𝑟𝑎𝑗 to the discriminator 𝐷 to classify the real from the fake,
where 𝑝𝑟𝑒𝑑_𝑡𝑟𝑎𝑗 is fake and 𝑔𝑡_𝑡𝑟𝑎𝑗 is real. We then train the generator
and the discriminator alternately, and they compete against each other
until the discriminator cannot differentiate between the predicted and
the ground truth trajectories. As a result, the generator can generate
multiple realistic predicted trajectories by picking different 𝑧. As all
realizations of the Gaussian distribution can generate realistic predicted
trajectories, we can consider that it successfully captures the vessel
trajectory modes. It is worth mentioning that such a modal space
is continuous, which does not lead to information loss and is more
practical.

Invertible mapping Although the Gaussian distribution captures
the vessel trajectory modes, there may be a many-to-one mapping
from the latent vector of modes to the predicted trajectory. In this
case, the Gaussian distribution characterizes a single mode with high
probability instead of a truly multimodal mode. Therefore, we attempt
to construct invertible mappings between the latent vector 𝑧 and the
predicted trajectory 𝑝𝑟𝑒𝑑_𝑡𝑟𝑎𝑗. Inspired by the reconstruction task (Zhu
et al., 2017), and we perform the transformation starting from the
latent vector, i.e., 𝑧 → 𝑝𝑟𝑒𝑑_𝑡𝑟𝑎𝑗 → 𝑧̂. In more detail, we generate the
predicted trajectory 𝑝𝑟𝑒𝑑_𝑡𝑟𝑎𝑗 from a latent vector 𝑧 and try to recover
𝑧 from 𝑝𝑟𝑒𝑑_𝑡𝑟𝑎𝑗 using the latent encoder 𝐸. By training the generator
𝐺 and the latent encoder 𝐸 simultaneously, we can achieve the one-to-
one mapping between the latent vectors and predicted trajectory, thus
allowing the Gaussian distribution to characterize a larger distribution
of trajectory modes.

Smooth mapping Unlike small objects, such as vehicles or pedes-
trians, vessels exhibit smoother movement patterns, which means that
the transition between vessel trajectory modes should be gradual. For
instance, a vessel traveling in a low-speed mode will not abruptly
switch to a fast mode. To ensure that the transition between trajectory
modes is gradual, we aim to construct a smooth mapping between
the latent vector 𝑧 and the predicted trajectory 𝑝𝑟𝑒𝑑𝑡𝑟𝑎𝑗. Liu et al.
(2021, 2022) point out that the term ‘‘smooth’’ implies a compact latent
space. Therefore, to compress the latent space, we employ both global
regularization and local interpolation techniques. At the global level,
we encourage the latent distribution of the ground truth encoded by
𝐸 to be close to the Gaussian distribution, which forces the latent
vector of modes to shrink near the origin. Locally, we expect that linear
interpolation between different latent vectors can also generate realistic
predicted trajectories to fool the discriminator, which corresponds to
removing the unrealistic part between two different latent vectors. With
the two techniques mentioned above, we prompt the latent space of the
modes to become more compact, thus allowing for a gradual transition
5

between trajectory modes.
4.3. Model architecture

The overall architecture of the proposed VT-MDM is presented
in Fig. 4. The model consists of three main components. The first
component is the prediction trajectory generator, which is used to
generate future trajectories of vessels. The second component is the
trajectory discriminator, which is used to determine whether the input
trajectory belongs to the ground truth or the trajectory generated by
the generator. The third component is the latent encoder, which is used
to construct an invertible and smooth mapping between the predicted
trajectories and the latent vectors.

4.3.1. Generator
Similar to the seq2seq model (see Section 3.2), the generator has

two main components in our model: a feature encoder and a trajectory
decoder. The feature encoder encodes the historical vessel trajectories
into low-dimensional features and then feeds them to the decoder.
The trajectory decoder decodes the features and outputs the multi-step
future trajectories.

1. Feature encoder
The feature encoder consists of a two-layers network. Firstly, a
linear layer embeds the historical vessel trajectory into a higher
dimension, facilitating subsequent network layers to learn more
features. Then, the high-dimensional features are fed into an
LSTM to learn the correlation between different vessel features
across time steps and embed them into a single output. The final
feature encoding ℎ𝑓,𝑖 is calculated as follows:

𝑒𝑓,𝑖 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑒𝑚𝑏(𝑠𝑖;𝑊𝑒𝑚𝑏)

ℎ𝑓,𝑖 = 𝐿𝑆𝑇𝑀𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑒𝑓,𝑖, ℎ𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑖);𝑊𝑒𝑛𝑐𝑜𝑑𝑒𝑟),
(10)

where 𝑊𝑒𝑚𝑏 and 𝑊𝑒𝑛𝑐𝑜𝑑𝑒𝑟 denote the network weights that can
be trained.

2. Trajectory decoder
Similar to the feature encoder, the trajectory decoder also con-
tains linear and LSTM networks. First, the latent vector 𝑧 sam-
pled from the normal distribution is connected to the feature
encoding ℎ𝑓,𝑖 to obtain 𝐿𝑓,𝑖 which contains the historical tra-
jectory features. 𝐿𝑓,𝑖 is then fed into the LSTM network and
decoded into the context information. Finally, the context in-
formation is reshaped by two linear layers to output the future
trajectories 𝛥𝑃𝑏,𝑖.

ℎ𝑏,𝑖 = 𝐿𝑆𝑇𝑀𝑑𝑒𝑐𝑜𝑑𝑒𝑟((𝐿𝑓,𝑖, 𝛥𝑃𝑓,𝑖), ℎ𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑖);𝑊𝑑𝑒𝑐𝑜𝑑𝑒𝑟)

𝑒𝑏,𝑖 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑒𝑚𝑏𝑏(ℎ𝑏,𝑖;𝑊𝑒𝑚𝑏𝑏)

𝛥𝑃𝑏,𝑖 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑜𝑢𝑡𝑝𝑢𝑡(𝑒𝑏,𝑖;𝑊𝑜𝑢𝑡𝑝𝑢𝑡),

(11)

where 𝑊𝑑𝑒𝑐𝑜𝑑𝑒𝑟, 𝑊𝑒𝑚𝑏𝑏 and 𝑊𝑜𝑢𝑡𝑝𝑢𝑡 denote the weights of the

network.
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Fig. 4. The model architecture of VT-MDM.
.3.2. Discriminator
As shown in Fig. 4, the architecture of the discriminator continues

he architecture of the feature encoder in the generator. Specifically,
t embeds the input trajectory into a low-dimensional encoding and
eeds it into a classification network, i.e., a fully connected layer, and
inally outputs the scores. Similar to conditional generation adversarial
etworks (Mirza and Osindero, 2014), the discriminator takes the
omplete vessel trajectory as input, which contains both historical and
uture trajectories. The real sample 𝑃𝑖 = (𝛥𝑃𝑓,𝑖, 𝛥𝑃𝑏,𝑖) and the fake
ample 𝑃𝑖 = (𝛥𝑃𝑓,𝑖, 𝛥𝑃𝑏,𝑖) are calculated according to Eq. (10), and then
he final score of the trajectory is given by Eq. (12).

𝑐𝑜 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑠𝑐𝑜𝑟𝑒(𝑃𝑖,𝑊𝑠𝑐𝑜𝑟𝑒), (12)

here 𝑃𝑖 ∼ 𝑝(𝑃𝑖, 𝑃𝑖) is randomly sampled from the either real or fake
ample, and 𝑊𝑠𝑐𝑜𝑟𝑒 denotes the weights of the network.

.3.3. Latent encoder
We also train a latent encoder that learns latent vectors from

ifferent vessel trajectories and generates the mean and variance of
he latent vector that best represent the selected vessel’s trajectory
ode. Specifically, the mean and variance of the future trajectories are

alculated using the following equation:

𝑖 = 𝐿𝑆𝑇𝑀𝑞(𝑃𝑖, ℎ𝑞(𝑖);𝑊𝑞)

𝑖 = 𝐿𝑖𝑛𝑒𝑎𝑟𝜇(𝑞𝑖;𝑊𝜇)

log 𝜎2𝑖 = 𝐿𝑖𝑛𝑒𝑎𝑟𝜎 (𝑞𝑖;𝑊𝜎 ),

(13)

where 𝑊𝑞 , 𝑊𝜇 and 𝑊𝜎 denote the weights of the network.

4.4. Loss function

Modeling distribution loss. In the adversarial training process, we
use real complete vessel trajectories 𝑃𝑖 = (𝛥𝑃𝑓,𝑖, 𝛥𝑃𝑏,𝑖) as real samples.

he prediction trajectories 𝑃𝑖 = (𝛥𝑃𝑓,𝑖, 𝛥𝑃𝑏,𝑖) generated by the generator
re used as fake samples, where 𝑃𝑏,𝑖 = 𝐺(𝑧, 𝛥𝑃𝑓,𝑖). The discriminator is

trained to distinguish between real and fake samples, and the generator
6

is trained to fool the discriminator. Finally, realistic vessel trajectory
modes can be captured by playing the generator and discriminator
against each other. The least squares objective (see Section 3.1) is used
as the adversarial loss in the proposed method and is written as:

𝐺𝐴𝑁−𝐺(𝐺) = E[(𝐷(𝑃𝑖) − 1)2] (14)

𝐺𝐴𝑁−𝐷(𝐷) = E[(𝐷(𝑃𝑖) − 1)2] +E[𝐷2(𝑃𝑖)]. (15)

Moreover, to force the generator to generate predicted trajectories
that match the ground truth, we use L2 loss between the output
trajectories and the ground truth.

𝑝𝑟𝑒𝑑 = ‖𝛥𝑃𝑏,𝑖 − 𝛥𝑃𝑏,𝑖‖2. (16)

The modeling loss is obtained by adding the three losses mentioned
above:

𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔(𝐺,𝐷) = 𝐺𝐴𝑁−𝐺(𝐺) + 𝐺𝐴𝑁−𝐷(𝐷) + 𝜆𝑝𝑟𝑒𝑑𝑝𝑟𝑒𝑑 , (17)

where 𝜆𝑝𝑟𝑒𝑑 controls the importance of 𝑝𝑟𝑒𝑑 .
Invertible mapping loss. To create an invertible mapping between

the latent vector and the predicted trajectories, the reconstruction loss
is employed. Specifically, we use a randomly sampled latent vector 𝑧 to
generate a predicted trajectory 𝑃𝑖 and wish to recover that latent vector
through the latent encoder. The invertible mapping loss is defined as:

𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒(𝐸) = 𝜆𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒‖𝐸(𝑃𝑖) − 𝑧‖1, (18)

where 𝑧 is a randomly sampled latent vector from the Gaussian distribu-
tion, and 𝜆𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 controls the importance of 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒. Following Zhu
et al. (2017), we use the re-parameterization trick to obtain 𝑧, allowing
direct back-propagation.

Smooth mapping loss. To create a smooth mapping between the
latent vectors and the predicted trajectories, we use an additional
smooth mapping loss for training. First, to compact the space on a
global scale, we perform a forced prior, i.e., encourage the encoding
of real trajectories to obey a Gaussian distribution:

𝑘𝑙(𝐸) = E[KL(𝐸(𝑃𝑖) ∥  (𝟎, 𝟏))], (19)

where 𝟏 is the identity matrix, KL(⋅ ∥ ⋅) is the Kullback–Leibler
(KL) divergence. In this way, our method is able to perform random
sampling during the prediction time.
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Second, we use local interpolation to encourage a more compact
space. Specifically, we interpolate two mode codes 𝑧1 and 𝑧2 of the
same vessel to obtain the mixture vector 𝑀𝑖𝑥(𝛼, 𝑧1, 𝑧2) = 𝛼𝑧1+(1−𝛼)𝑧2,
as suggested in Verma et al. (2019). Here, 𝛼 ∈ [0, 1] is sampled from
a 𝐵𝑒𝑡𝑎(2, 2) distribution, and it denotes the weight of the 𝑧1 features
included in the mixed variable 𝑀𝑖𝑥(𝛼, 𝑧1, 𝑧2). Then, 𝑀𝑖𝑥(𝛼, 𝑧1, 𝑧2) is
fed to the generator to generate a predicted trajectory 𝛥𝑃𝑏,𝑚𝑖𝑥. Finally,
𝑃𝑚𝑖𝑥 = (𝛥𝑃𝑓,𝑚𝑖𝑥, 𝛥𝑃𝑏,𝑚𝑖𝑥) is fed to the discriminator, and we expect the
discriminator to classify it as real. Specifically, the local interpolation
is achieved by the following loss terms:

𝑀𝑖𝑥(𝐺) = E[(𝐷(𝑃𝑚𝑖𝑥) − 1)2]. (20)

Summing the above losses to obtain 𝑠𝑚𝑜𝑜𝑡ℎ:

𝑠𝑚𝑜𝑜𝑡ℎ(𝐺,𝐸) = 𝜆𝑘𝑙𝑘𝑙(𝐸) + 𝑀𝑖𝑥(𝐺), (21)

where 𝜆𝑘𝑙 controls the importance of 𝑘𝑙.
Full loss We combine the above losses to obtain the full loss:

min
𝐺,𝐸

min
𝐷

𝑓𝑢𝑙𝑙(𝐺,𝐷,𝐸) = 𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔 + 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 + 𝑠𝑚𝑜𝑜𝑡ℎ. (22)

Similarly to Kosaraju et al. (2019), the generator 𝐺 and latent encoder
𝐸 are trained simultaneously.

5. Experiments

In this section, we evaluate the predictive performance of VT-MDM.
We use the real AIS dataset of the Yellow Sea for analysis to validate
the efficacy of the proposed approach. The dataset corresponds to that
collected from December 13 to December 15, 2021, and consists of
the historical trajectories of 1,063 cargo vessels. First, we start by pre-
processing the AIS data (Section 5.1). Next, we evaluate its prediction
accuracy (Section 5.2), its multimodal prediction performance (Sec-
tion 5.3), its smoothing analysis (Section 5.4), as well as the uncertainty
analysis (Section 5.5) and finally scalability analysis (Section 5.6).

5.1. Data preprocessing

The AIS data is used to develop models for predicting vessel tra-
jectories. Before being used as input data, it requires appropriate pre-
processing to ensure its reliability, accuracy, and availability. First, the
dataset is filtered according to the following:

• Feature extraction. Select the following information from the raw
AIS data: time, MMSI, latitude, longitude, speed over ground, and
course over ground.

• Separate the vessel’s trajectory. After dividing the dataset accord-
ing to MMSI, it is sorted by time.

• Time interval splitting. When the interval between two points is
greater than 3 h, the two points are used as splitting points to
separate two consecutive vessel trajectories.

• Elimination of invalid data. Delete the vessel data whose latitude
and longitude at the before and after moments do not meet the
given threshold to remove moored or anchored vessels.

After the above processing, the final matrix representation of the
AIS data for the 𝑖th vessel is as follows:

𝑋𝑖 = [𝑙𝑜𝑛𝑖, 𝑙𝑎𝑡𝑖, 𝑣𝑖, 𝑐𝑖, 𝑇𝑠,𝑖,MMSI]𝑇 , (23)

where 𝑇𝑠,𝑖 denotes the timestamps.
IMO forces vessels to comply with AIS performance standards,

which require static information to be updated every 6 min or as
required, and dynamic information to be reported between 2 s and
3 min (Yang et al., 2019). However, AIS data is affected by various
factors, such as varying broadcast frequency and packet loss, resulting
in inconsistent time intervals. Cubic spline interpolation was intro-
duced to recover vessel trajectories, but different resampling times must
7

be considered for different application scenarios. We argue that the
uncertainty of short-term vessel trajectory may have more practical im-
plications, such as avoiding close collisions in busy waters. Therefore,
we set the resampling time to 60 s in our experiments. We emphasize
that the proposed method can be adapted to predict longer vessel
trajectories by adjusting the resampling time. The latitude, longitude,
and time data are then differentially processed. At this point, the tem-
poral and spatial dimensions of the vessel trajectory are qualitatively
represented by the time interval and relative position, respectively. The
speed and heading information are normalized using the maximum–
minimum normalization method, which is defined by the following
equation:

𝑥∗ =
𝑥 − 𝑥min

𝑥max − 𝑥min
, (24)

where 𝑥min and 𝑥max denote the minimum and maximum values in the
sample, 𝑥 and 𝑥∗ denote the original data and the normalized data,
respectively.

Finally, sliding window extraction decomposes the trajectory data
into a list of input/target sequences of a specific length.

5.2. Trajectory prediction accuracy

In this subsection, we validate the prediction accuracy of the pro-
posed method. The vessel’s trajectory during the last 24 min is used
to predict the trajectory of the next 6 and 12 min. We compare
the prediction results of our model with several other deterministic
baselines, including the linear regression (Linear), and the LSTM, as
well as the seq2seq model.

Evaluation Metrics Similar to prior work (Sørensen et al., 2022;
Chen et al., 2022), we use three error metrics to describe the distance
error of the predicted value and the ground truth :

1. Mean Absolute Error (MAE): The absolute value of the difference
between the model prediction and the ground truth over all
prediction steps.

MAE = 1
𝑁

𝑛
∑

𝑖=1

𝑡𝑝𝑟𝑒𝑑
∑

𝑡=1
|(𝑙𝑜𝑛𝑡𝑖, 𝑙𝑎𝑡

𝑡
𝑖) − ( ̂𝑙𝑜𝑛𝑡𝑖, ̂𝑙𝑎𝑡𝑡𝑖)|, (25)

where ( ̂𝑙𝑜𝑛𝑖, ̂𝑙𝑎𝑡𝑖) is the predicted latitude and longitude, and
(𝑙𝑜𝑛𝑖, 𝑙𝑎𝑡𝑖) is the ground truth.

2. Root Mean Square Error (RMSE): The arithmetic square root of
the expected value of the square of the difference between the
model prediction and the ground truth.

RMSE =

√

√

√

√ 1
𝑁

𝑛
∑

𝑖=1

𝑡𝑝𝑟𝑒𝑑
∑

𝑡=1
[(𝑙𝑜𝑛𝑡𝑖, 𝑙𝑎𝑡

𝑡
𝑖) − ( ̂𝑙𝑜𝑛𝑡𝑖, ̂𝑙𝑎𝑡𝑡𝑖)]2. (26)

3. Haversine formula: The Haversine formula determines the great
circle distance between two points on a sphere based on lon-
gitude and latitude. This paper calculates the mean prediction
error (in kilometers) within the selected prediction time step
using the Haversine distance formula, which is given by:

ℎ𝑎𝑣(
ℎ𝑎𝑣
𝑅

) = ℎ𝑎𝑣(𝑙𝑎𝑡𝑖−𝑙𝑎𝑡𝑖)+cos(𝑙𝑎𝑡𝑖) cos( ̂𝑙𝑎𝑡𝑖)ℎ𝑎𝑣(𝑙𝑜𝑛𝑖−𝑙𝑜𝑛𝑖), (27)

where ℎ𝑎𝑣(𝜃) = sin2( 𝜃2 ), 𝑅 is the radius of the earth, and ℎ𝑎𝑣 is
the actual distance between the predicted point and the ground
truth.

The prediction error results for two prediction lengths of different
methods are presented in Tables 1 and 2, where Table 1 corresponds
to the error result for a prediction length of 6 min, and Table 2
corresponds to the result for 12 min. The results presented here are
the average of 30 times of training for each model. It is worth noting
that the LSTM and Linear can only predict the trajectory at one future
moment at a time, so the multi-step prediction in recursive form is used.

The results demonstrate that Linear can make accurate predictions
for short-time trajectories, but its performance deteriorates rapidly for
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Table 1
Comparison of prediction results for different methods at 𝑡𝑝𝑟𝑒𝑑 = 6 min.

Method Linear LSTM seq2seq VT-MDM(Ours)

MAE (e-3◦) Avg 8.449 5.728 2.011 1.963
Min 8.377 5.299 1.891 1.874
Max 8.537 6.124 2.137 2.061

RMSE (e-3◦) Avg 11.15 7.641 2.676 2.521
Min 11.06 7.042 2.512 2.405
Max 11.26 8.141 2.844 2.640

ℎ𝑎𝑣 (km) Avg 1.399 0.911 0.344 0.310
Min 1.389 0.841 0.323 0.296
Max 1.411 0.973 0.365 0.325

Table 2
Comparison of prediction results for different methods at 𝑡𝑝𝑟𝑒𝑑 = 12 min.

Method Linear LSTM seq2seq VT-MDM(Ours)

MAE (e-3◦) Avg 12.02 8.413 3.852 2.376
Min 11.88 7.927 3.622 2.171
Max 12.19 8.928 4.091 2.580

RMSE (e-3◦) Avg 17.05 11.17 5.258 3.206
Min 16.87 10.52 4.947 2.927
Max 17.27 11.81 5.612 3.506

ℎ𝑎𝑣 (km) Avg 2.223 0.911 0.681 0.392
Min 2.120 0.841 0.641 0.358
Max 2.250 0.973 0.724 0.423

longer predictions. Similarly, the prediction errors of LSTM increase as
the sliding window moves backward, causing a substantial decline in
its performance for longer predictions. Regarding the prediction of the
future 6 min vessel trajectory, both the seq2seq model and VT-MDM
demonstrate comparable performance. However, for longer predictions
of 12 min, VT-MDM significantly outperforms the seq2seq model in
terms of accuracy, revealing the decrease in accuracy of the seq2seq
model as the prediction time increases. In contrast, the prediction
accuracy of VT-MDM remains more stable because it captures the actual
distribution of vessel trajectory modes.

5.3. Multimodal trajectory prediction

In this subsection, we present the multimodal trajectory prediction
results of the proposed method to illustrate the impact of modifying the
latent vectors on the prediction.

As explained in Section 4.3.1, we input the vessel’s historical trajec-
tory and a randomly chosen latent vector from a Gaussian distribution
into the generator to generate the anticipated trajectory. The outcomes
of the final predictions are shown in Fig. 5. Figs. 5(a), 5(c) and 5(e)
corresponds to the case where the prediction duration is 6 min, whereas
Figs. 5(b), 5(d) and 5(f) corresponds to the case with a prediction
duration of 12 min. The red lines in the figure represent the historical
trajectories of the vessels, while the other colors indicate the predicted
trajectories. Figs. 5(a) and 5(b) demonstrate the prediction results for
the vessel traveling in different directions at future moments. In the
case of Fig. 5(b), the yellow line depicts the predicted outcome of
the vessel continuing to travel in the original direction, whereas the
orange line indicates the predicted outcome of the vessel changing
its direction of travel. Although the two predictions maintain parallel
travel directions after some time, the straight-line distance between
them differs by 531.91 m. Figs. 5(c) and 5(d) present the predicted
results of the vessel traveling at different speeds at future moments.
The predicted directions of the same vessel almost overlap; however,
there is a deviation of several hundred meters in the final arrival
position of the two different predictions, corresponding to different
travel speeds. Figs. 5(e) and 5(f) demonstrate the prediction results
obtained by inputting five different latent vectors. Different latent
vectors correspond to different predicted trajectories, as presented in
8

the figure. The results show that by constructing an invertible mapping 3
Table 3
Percentage of the true vessel position inside the corresponding
𝜎-contour.

Prediction steps 6 min 12 min

1𝜎 85% 50%
2𝜎 89% 59%
3𝜎 95% 90%

between the latent vectors and the predicted trajectories, the model’s
multimodal prediction capability can be effectively enhanced.

5.4. Prediction smoothness analysis

In this subsection, we illustrate the smoothing effect of the pro-
posed method by visualizing the predicted trajectories obtained after
interpolation using various modes.

To ensure a gradual transition between the different prediction
modes of the vessel, we compact the latent space using global regular-
ization and local interpolation, as detailed in Section 4.2. We perform
linear interpolation for two randomly sampled latent vectors, 𝑧1 and 𝑧2,

here we choose 𝛼 from the interval [0, 1] with a step size of 0.2. The
esulting mixture vector 𝑀𝑖𝑥(𝛼, 𝑧1, 𝑧2) is then fed into the generator to
enerate the predicted trajectory. Fig. 6 presents the different predicted
rajectories generated by uniformly varying 𝛼. For illustrative purposes,
e only display the 12 min predicted duration results. The yellow and
range lines represent the predicted trajectories generated by 𝑧1 and
2, respectively, while the green line represents the predicted trajectory
enerated by the mixed vector 𝑀𝑖𝑥(𝛼, 𝑧1, 𝑧2). Specifically, Fig. 6(a)
epicts the scenario with a gradual change in the vessel direction of
ravel, and Fig. 6(b) depicts the scenario with a gradual change in travel
peed. As shown in the figure, the predicted trajectory generated by
he mixed vector 𝑀𝑖𝑥(𝛼, 𝑧1, 𝑧2) contains both 𝑧1 and 𝑧2 features with

given scale, and the predicted trajectory varies uniformly with 𝛼.
hese results demonstrate that constructing a smooth mapping between
he latent vector and the predicted trajectory can achieve a gradual
ransition from one prediction mode to the next.

.5. Uncertainty analysis

In order to further evaluate the prediction risk of the proposed
ethod, we perform an analysis of prediction uncertainty.

The primary cause of uncertainty in the predicted locations for
ach time interval is the uncertainty that is associated with the latent
ectors. To quantify the predicted risk, it is suggested to run a Monte
arlo simulation (Raychaudhuri, 2008; Capobianco et al., 2021a). As
resented in Fig. 7, the prediction results are given for two prediction
urations of 6 and 12 min. The red dashed line represents the historical
rajectory of the vessel, the green dashed line represents the actual
uture trajectory, and the blue dashed line corresponds to the mean of
he trajectories obtained from 500 predictions generated by our model.
dditionally, we provide the 1𝜎, 2𝜎, and 3𝜎 contours for the final
redicted position. While the model can accurately capture the actual
uture trajectory of the vessel in the majority of cases, deviations in the
redictions do arise. Consequently, statistical analysis was performed
n the overall predictions to evaluate the model’s capacity to accurately
orecast the future vessel position. For each trajectory, 500 predictions
ere performed, and the percentage of vessels whose ground truth val-
es were within the regions bounded by the corresponding 𝜎-contour
as investigated. Table 3 presents the final results. It was discovered

hat the ability of the 𝜎-contour to capture the true trajectory decreased
s the prediction duration increased, which is consistent with the
indings presented in Tables 1 and 2. In the worst-case scenario, the

𝜎 contour still captures 90% of the true future vessel trajectories.
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Fig. 5. Visualization of prediction results.
Fig. 6. Visualization of prediction results.
5.6. Extensibility analysis

In our setting, the generator uses the most basic encoder–decoder
structure. This structure, although simple, has been shown to handle
variable-length input and output sequence prediction tasks efficiently.
Nevertheless, recent research has introduced new model architectures,
9

including the encoder–decoder structure with the attention mecha-
nism (Capobianco et al., 2021b). The attention mechanism can es-
tablish a relationship between the hidden states of the encoder and
decoder, thus improving the expressiveness of the model. To further
explore the extensibility of the proposed network architecture, we
conduct an illustrative experiment. Specifically, we replace the original
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Fig. 7. Predicted trajectory results with uncertainty ellipse.
Table 4
Comparison of prediction results for different network architectures at
𝑡𝑝𝑟𝑒𝑑 = 6 min.

Method VT-MDM VT-MDM(attention)

MAE (e-3◦) Avg 1.963 1.252
Min 1.874 1.189
Max 2.061 1.324

RMSE (e-3◦) Avg 2.521 1.692
Min 2.405 1.603
Max 2.640 1.805

ℎ𝑎𝑣 (km) Avg 0.310 0.200
Min 0.296 0.190
Max 0.325 0.212

network architecture of the generator using an encoder–decoder struc-
ture with an attention mechanism. And the final results are reported in
Tables 4 and 5.

The results demonstrate that the prediction performance of the pro-
posed method can be effectively improved by using a more advanced
network architecture. Indeed, our proposed method is not limited to
any specific network architecture and can be implemented with most
network architectures designed for sequence prediction. This implies
that our proposed model can be integrated with other model structures
to improve the generative power further. This provides good insight for
10
Table 5
Comparison of prediction results for different network architectures at
𝑡𝑝𝑟𝑒𝑑 = 12 min.

Method VT-MDM VT-MDM(attention)

MAE(e-3◦) Avg 2.376 2.263
Min 2.171 2.144
Max 2.580 2.384

RMSE(e-3◦) Avg 3.206 3.077
Min 2.927 2.912
Max 3.506 3.243

ℎ𝑎𝑣(km) Avg 0.392 0.357
Min 0.358 0.338
Max 0.423 0.377

future research to explore various new model structures and techniques
and integrate them into our method for better performance.

6. Conclusions

In this paper, we study the multimodal vessel trajectory predic-
tion problem from a novel perspective, i.e., utilizing additional hiding
regimes to characterize the complex trajectory modes independently.
To this end, we propose VT-MDM, a new method for vessel trajectory
prediction based on historical AIS data that performs better in multi-
modal prediction by modeling the distribution of trajectory modes. In
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more detail, we use adversarial learning to enable a Gaussian distribu-
tion to capture the vessel trajectory modes and create an invertible and
smooth mapping between the latent vectors of modes and the predicted
trajectories. To the best of our knowledge, this is the first method
to achieve the truly and gradually multimodal trajectory prediction,
providing richer information for improving maritime safety. Extensive
experiments demonstrate that VT-MDM can achieve promising mul-
timodal vessel trajectory predictions with high accuracy, providing a
general framework for multimodal trajectory prediction of vessels.

In this study, we only consider the uncertainty of short-term vessel
behavior. A major reason is that short-term multimodal trajectory pre-
diction is more realistic for preventing close-range encounter situations
from arising. A future direction of our work is to systematically eval-
uate multimodal vessel trajectory prediction methods, including our
method, in long-term settings. Furthermore, while we employ a simple
seq2seq model as our base prediction architecture, investigating the
potential of more complex network architectures to improve prediction
performance is an important area of further research.
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