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Introduction

I Federated Learning (FL) Multiple clients collaborate to solve machine learning
problems under the coordination of a server, where each client’s raw data is stored
locally and is not exchanged or transferred. The federated networks are usually com-
prised of a large number of clients that generate and collect data in a non-identical
distribution manner, most of which may never participate in training. The standard
FL follows the Empirical Risk Minimization (ERM) principle and is formalized as:
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I Out-of-distribution (OOD) Generalization Since the distribution shift probably ex-
ists between participating and non-participating (unseen) clients, models that follow
ERM may perform poorly on the non-participating clients. In order to generalize the
model appropriately to non-participating clients, we examine the problem of OOD
generalization in FL, formally defined as:

min
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.

I Invariant Relationships A proven strategy in the OOD generalization literature is to
learn the invariant relationships that are stable across distributions and build a model
that works equally well over OOD. Intuitively, an invariant relationship is a statisti-
cal relationship between inputs and target variables that is maintained across all data
distributions. This can be expressed by the following equation, which holds for all
2, 2′ ∈ Call and for all I ∈ supp(P(Φ(-2))) ∩ supp(P(Φ(-2′))):
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Remark. The relationship between representation Φ(-) and target . is fixed across
distributions in Call, i.e., using Φ(-) to predict . is invariant.

Motivation
Question: could the current techniques for learning invariant relationships adhere en-
tirely to the federated principles of privacy-preserving and limited communication?

An Explicit Perspective

Most existing work concentrates on learning invariant relationships explicitly from
three angles: data, representation, and distribution.

the data/representation-based methods: require a centralized setting where data or
representation is shared across clients.
% privacy-preserving
the distribution-based methods: assume the presence of only a small number of
participating clients, most of which are involved in each round of communication.
% limited communication

⇓
ANew Perspective: Implicit

Considering that the model parameter is usually the only interaction between the client
and the server, we thus stand on a new perspective, i.e., restrict the method to the
parameter space for learning invariant relationships implicitly.

the implicit method doesn’t need to communicate anything other than the parameter.
! privacy-preserving
the implicit method can be analyzed in the stochastic optimization framework like
standard federated techniques.
! limited communication

Method: FEDIIR

I This paper proposes Federated Learning with Implicit Invariant Relationships
(FedIIR), which implicitly learns invariant relationships for OODgeneralizationwhile
adhering to the federated principles of privacy-preserving and limited communication.

quantify invariant relationships using prediction disagreement:
I(Φ, C) = sup

I∈U(Φ,C)
sup

(2,2′)∈C2
|F∗
2(I) − F∗

2′(I) |.

obtain surrogate objectives by parameterization:
sup

(2,2′)∈C2
|F(I;l − ∇lR2(\)) − F(I;l − ∇lR2′(\)) |

. sup
(2,2′)∈C2

‖∇lF(I;l)‖‖∇lR2(\) − ∇lR2′(\)‖.

Optimization Objective

The proposed FedIIR attempts to minimize the risk and align the inter-client gra-
dient w.r.t. the classifier, which is formalized as:

min
5
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[
R2( 5 ) +

W

2
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]
,

where R( 5 ) = E2∼QparR2( 5 ) is the global risk.

I If the inter-client gradient is aligned, the model’s local learning on one client will
also improve its performance on other clients. This indicates that the model implicitly
learns invariant relationships that work equally for all clients.
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Figure 1. Illustration of inter-client gradient alignment with two clients.

Generalization Analysis

When the number of participating clients is finite in practice, what is the range of non-
participating clients to which FedIIR is expected to generalize?

Theorem 3 of the paper

Given the collection Cpar of clients, let’s assume that ℓ(·, ·) ≤ " . Then for all 5 =

F◦Φ ∈ F , we have the following risk bound for the affine combination of participating
clients:

sup
_∈Λa

R_( 5 ) ≤ R( 5 ) + "̃I(Φ, Cpar) + "̃ sup
(2,2′)∈C2

par

d(P2(-), P2′(-)),

where "̃ = (1 + |Cpar|a)" is monotonic in a, and d(P2(-), P2′(-)) = sup- |P2(-) −
P2′(-) | is the total variation distance.

If the global risk, invariance constraint and covariate shift are sufficiently small, FedIIR
promises to generalize to non-participating clients included in the affine combination of
participating clients.

Convergence Analysis

How does the convergence speed of FedIIR fare in the scenario where clients are mas-
sively distributed with limited communication?

Assumptions

Smoothness For all clients 2, we assume that '2(l) is L-smoothness and Moral-
smoothness.
Bounded Statistical Heterogeneity For all clients 2, we assume that when there
is no perturbation, the variance of the local gradient w.r.t. the global gradient is
bounded by �.
Bounded Intra-client Variance For all clients 2, we assume that ∇'2(l; Z),
∇2'2(l; Z), and ∇2'2(l; Z)∇'2(l; Z) are unbiased estimates of ∇'2(l),
∇2'2(l), and ∇2'2(l)∇'2(l), respectively, with variances bounded by f2.
`-PL Inequality We assume that '(l) satisfies the `-PL inequality with ` > 0.

Theorem 4 of the paper

Let aforementioned assumptions hold and FedIIR updates with constant local and
global step-size such that [; ≤ 1

4 !
√

1+W2, [̃ =  [6[; <
1

2U`. Then, the sequence of
iterates generated by FedIIR satisfies

E['(lC) − '∗] ≤ (1 − 2U`[̃)C ['(l0) − '∗]

+ [;
V1�

2 + V2W
2f2 + V3W

2�2f2

2U`
,

where U > 0 is a constant, and V1, V2, V3 are the polynomials in [;.

For the `-PL inequality case, FedIIR has a linear convergence rate up to a solution that
is proportional to [;, where the penalty factor W affects the suboptimality of the solution.

Experiments

I Results on a small number of clients scenario.

Algorithm
RotatedMNIST VLCS PACS OfficeHome

Average
ConvNet ResNet-18 ResNet-18 ResNet-50

FedAvg 94.5±0.1 76.3±0.4 83.1±0.0 68.5±0.1 80.6
FedAdg 94.7±0.0 77.1±0.1 83.1±0.2 68.4±0.2 80.8
FedSR 94.7±0.1 75.8±0.4 83.4±0.3 69.1±0.2 80.8
FedIIR 95.0±0.2 76.6±0.6 83.7±0.3 69.2±0.0 81.1

Table 1. Average test accuracy (%) using leave-one-out domain validation in the scenario with a small
number of clients. Each training domain is treated as a separate participating client, and all participating
clients are sampled in each round of communication.

I Results on a large number of clients scenario (limited communication).
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Figure 2. Average test accuracy (%) versus the total number of participating clients, with the number
of sampled clients in one communication round matches the number of training domains.
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