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Introduction

I Problem. Optimization over permutations is typically an NP-hard problem that arises
extensively in ranking, matching, tracking, etc. Denoting the set of all n-order permu-
tation matrices as Pn := {P ∈ {0, 1}n×n |

∑
iPi,j = 1,

∑
j Pi,j = 1 (∀i, j)}, and this

work considers optimization over permutation matrices:
min
P∈Pn

f (P ).

I Relaxation methods. Previous studies proposed relaxing permutation matrices into
continuous spaces, including the convex hull of permutation matrices—the Birkhoff
polytope—and their embeddings in a differentiable manifold—the orthogonal group.
Recently, relaxation methods involving the Birkhoff polytope have made significant
advancements, particularly in penalty-free optimization and probabilistic inference.

I Motivation. However, providing equally good relaxation methods within the or-
thogonal group remains an unexplored area. Indeed, relaxation onto the orthogonal
group offers several unique potential advantages, such as:

lower representation dimension (n(n−1)
2 ) compared to Birkhoff polytope ((n− 1)2).

preserve the inner product of vectors, which maintain the geometric structures.

This work aims to develop an effective method for relaxing the permutation ma-
trices onto the orthogonal group, with a particular focus on:

Flexibility: can control the degree of approximation to permutation matrices.
Simplicity: does not rely on additional penalty terms.
Scalability: enables learning the latent variable model with permutations.

Method: OT4P

Figure 1. Illustration of OT4P with colored dots to help visualize the transformation.

This paper presents Orthogonal Group-based Transformation for Permutation Relax-
ation (OT4P), a temperature-controlled differentiable transformation. OT4P maps un-
constrained vector space to the orthogonal group, where the temperature, in the limit,
concentrates orthogonal matrices near permutation matrices.

As illustrated in Figure 1, OT4P involves two steps:
I Step I map a vector ( ) to an orthogonal matrix ( ) utilizing the Lie exponential:

φ : R
n(n−1)

2 → so(n) → SO(n)
A 7→ A− A> 7→ expm(A− A>).

(1)

I Step II move the orthogonal matrix ( ) along the geodesic, controlled by temperature,
to another orthogonal matrix ( ), making it nearer to the closest permutation matrix (
or ):

ψτ : SO(n) → MP

O 7→ ρ(O)D
(
[ρ(O)D]>O

)τ
D>.

(2)

Details of Step I

Detailed Equation (1)

map a vector A ∈ R
n(n−1)

2 to a skew-symmetric matrix A− A> ∈ so(n).
map a skew-symmetric matrix A− A> ∈ so(n) to an orthogonal matrix
expm(A− A>) ∈ SO(n).

I The following theorem indicates that each orthogonal matrix in SO(n) can be
represented by a vector in R

n(n−1)
2 , with each representation being uniquely defined

within set U , provided it exists there.

Theorem 1 in the paper

The mapping φ(·) is differentiable, surjective, and it is injective on the domain U :=
{A ∈ R

n(n−1)
2 | Imλk(A − A>) ∈ (−π, π), ∀k} with λk(·) the eigenvalues. Addition-

ally, the set SO(n) \ φ(U) has a zero Lebesgue measure in SO(n).

Boundary issues

The permutation matrices may include −1 as one of their eigenvalues, with their corre-
sponding representations precisely lying on the boundary of U . To avoid the optimiza-
tion path to deviate fromU , we propose shifting the boundary ofU to other eigenval-
ues by left-multiplying the result of φ(·) with an orthogonal matrixB ∈ SO(n). There-
fore, the representation of the permutation matrix P in U is changed from logm(P ) to
logm(B>P ).

Details of Step II

Detailed Equation (2)

find the permutation matrix ρ(O) := arg maxP∈Pn
〈P,O〉F closest to O.

map P and O to the tangent space TPSO(n) for linear interpolation, and then map
the interpolation result back to SO(n), given as

Õ = P expm(P> [
τP logm(P>O) + (1 − τ )P logm(P>P )

]
)

= P (P>O)τ .
(3)

I Equation (3) works only for even permutations; however, we can readily extend it to
the odd permutation cases.

Extend to odd permutations

identify an agent P̂ = PD of odd permutation P , with D = diag({1, . . . , 1,−1}).
move O toward P̂ to obtain Ô using Equation (3).
map Ô to the neighborhood of P , resulting in Õ = ÔD>.

I The following theorem shows that any point in the relaxation manifold MP of
permutation matrices can be uniquely identified by an orthogonal matrix in the special
orthogonal group SO(n), where the set of meaningless elements (i.e., not mapped any
point in MP) can be disregarded.

Theorem 2 in the paper

The mapping ψτ(·) is differentiable, surjective, and injective on each submanifold SP .
Additionally, the set of meaningless points for ψτ(·) has a zero Lebesgue measure in
SO(n).

Parameterization for gradient-based optimization

min
P∈Pn

f (P ) relaxing−−−−→ min
A∈R

n(n−1)
2

f (ψτ ◦ φ(A)).

I The surjectivity does not alter the original problem.
I The injectivity does not complicate the original problem.
I The efficient optimization process.

Forward process. The orthogonal matrix O can be factorized as O = Qdiag({λ1, . . . , λn})Q−1, and
then the matrix power Oτ can be computed by Oτ = Qdiag({λτ1, . . . , λτn})Q−1.
Backward process. Given Õ = ψτ(O), there exists a unique orthogonal matrix Wτ = ÕO> such
that Õ = WτO. In this way, the forward pass is streamlined into Õ = WτO, thereby rendering the
backward pass highly efficient, as it only involves one linear transformation.

Re-parameterization provides stochastic optimization

minEP∼q(P ;θ)f (P ).

simulate q(P ; θ) using the mappings ρ(·) and φ(·):

P ∼ q(P ; θ) ⇐⇒ P = ρ(φ(A +Bε)) with θ := {A,B ∈ R
n(n−1)

2 }.
bring the gradient inside the expectation by relaxing the mapping ρ(·) to ψτ(·):

∇Eε∼q(ε)f (ψτ(φ(A +Bε))) = Eε∼q(ε)∇f (ψτ(φ(A +Bε))) .

Experiments

I Finding mode connectivity
Table 1. `1-Distance and Precision (%) of algorithms across different network architectures.

Algorithm
MLP5 VGG11 ResNet18

log(1 + `1) (↓) Precision (↑) log(1 + `1) (↓) Precision (↑) log(1 + `1) (↓) Precision (↑)

Weight Matching 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 1.215 ±2.72 99.97 ±0.06

Sinkhorn 0.000 ±0.00 100.0 ±0.00 11.61 ±0.07 63.08 ±3.14 9.830 ±0.181 95.56 ±0.88

OT4P (τ = 0.3) 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00

OT4P (τ = 0.5) 0.000 ±0.00 100.0 ±0.00 0.818 ±1.83 99.99 ±0.03 0.000 ±0.00 100.0 ±0.00

OT4P (τ = 0.7) 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00

I Inferring neuron identities
Table 2. Marginal log-likelihood and Precision (%) of algorithms across different proportions of known
neurons.

Algorithm
Known 5% Known 10% Known 20%

E log p(Y |P ) (↑) Precision (↑) E log p(Y |P ) (↑) Precision (↑) E log p(Y |P ) (↑) Precision (↑)

Naive −3040 ±43.4 8.960 ±7.85 −2917 ±225 29.68 ±17.2 −1690 ±539 78.40 ±12.6

Gumbel-Sinkhorn −2256 ±574 62.08 ±16.0 −239.8 ±119 98.16 ±1.95 −144.8 ±27.1 99.84 ±0.358

OT4P (τ = 0.3) −130.9 ±10.9 100.0 ±0.00 −127.5 ±10.1 100.0 ±0.00 −126.7 ±11.0 100.0 ±0.00

OT4P (τ = 0.5) −164.0 ±36.8 100.0 ±0.00 −149.7 ±25.0 100.0 ±0.00 −148.2 ±27.6 100.0 ±0.00

OT4P (τ = 0.7) −829.3 ±831 74.16 ±35.9 −183.1 ±46.2 100.0 ±0.00 −171.8 ±40.3 100.0 ±0.00

I Solving permutation synchronization

Figure 2. F-scores (%) for different algorithms on the WILLOW-ObjectClass dataset.
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