OT4P: Unlocking Effective Orthogonal Group Path for Permutation Relaxation

Yaming Guo^{1,4}, Chen Zhu², Hengshu Zhu^{3,4}, Tieru Wu¹

¹Jilin University, ²University of Science and Technology of China, ³Chinese Academy of Sciences, ⁴The Hong Kong University of Science and Technology (GZ)

Introduction

Problem. Optimization over permutations is typically an NP-hard problem that arises extensively in ranking, matching, tracking, etc. Denoting the set of all *n*-order permutation matrices as $\mathcal{P}_n := \{P \in \{0,1\}^{n \times n} \mid \sum_i P_{i,j} = 1, \sum_j P_{i,j} = 1 \ (\forall i, j)\}\)$, and this work considers optimization over permutation matrices:

NEURAL INFORMATION

PROCESSING SYSTEMS

$$
\min_{P \in \mathcal{P}_n} f(P).
$$

- **In Relaxation methods.** Previous studies proposed relaxing permutation matrices into continuous spaces, including the convex hull of permutation matrices—the Birkhoff polytope—and their embeddings in a differentiable manifold—the orthogonal group. Recently, relaxation methods involving the Birkhoff polytope have made significant advancements, particularly in penalty-free optimization and probabilistic inference.
- **IDED** Motivation. However, providing equally good relaxation methods within the or**thogonal group remains an unexplored area.** Indeed, relaxation onto the orthogonal group offers several unique potential advantages, such as:
	- lower representation dimension ($\frac{n(n-1)}{2}$) 2) compared to Birkhoff polytope $((n-1)^2)$.
	- **PEPT 1.4 The inner product of vectors, which maintain the geometric structures.**

As illustrated in Figure 1, OT4P involves two steps: \triangleright **Step I** map a vector \odot to an orthogonal matrix \odot utilizing the Lie exponential:

This work aims to **develop an effective method for relaxing the permutation matrices onto the orthogonal group**, with a particular focus on:

- Flexibility: can control the degree of approximation to permutation matrices.
- Simplicity: does not rely on additional penalty terms.
- Scalability: enables learning the latent variable model with permutations.

Figure 1. Illustration of OT4P with colored dots to help visualize the transformation.

This paper presents *Orthogonal Group-based Transformation for Permutation Relaxation* (OT4P), a temperature-controlled differentiable transformation. OT4P maps unconstrained vector space to the orthogonal group, where the temperature, in the limit, **concentrates orthogonal matrices near permutation matrices**.

► Equation (3) works only for even permutations; however, we can readily **extend it to the odd permutation** cases.

- identify an agent *P* $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- move *O* toward *P* $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ to obtain *O* $\overline{}$ using Equation (3).
- map *O* \widehat{O} to the neighborhood of *P*, resulting in $\widetilde{O} = \widehat{O}D^{\top}$.

 \blacktriangleright The following theorem shows that any point in the relaxation manifold $\mathcal{M}_{\mathcal{P}}$ of permutation matrices can be uniquely identified by an orthogonal matrix in the special orthogonal group $SO(n)$, where the set of meaningless elements (i.e., not mapped any point in $\mathcal{M}_{\mathcal{P}}$ can be disregarded.

$$
\phi : \mathbb{R}^{\frac{n(n-1)}{2}} \to \mathfrak{so}(n) \longrightarrow \text{SO}(n)
$$

$$
A \mapsto A - A^{\top} \mapsto \text{expm}(A - A^{\top}).
$$

 \triangleright **Step II** move the orthogonal matrix \odot along the geodesic, controlled by temperature, to another orthogonal matrix ω , making it nearer to the closest permutation matrix \Box or \blacksquare):

(1)

min $P \in \mathcal{P}_n$ *f*(*P*) relaxing \longrightarrow min *A*∈R *n*(*n*−1) $\overline{2}$ $f(\psi_\tau \circ \phi(A)).$

- \blacktriangleright The surjectivity does not alter the original problem.
- \blacktriangleright The injectivity does not complicate the original problem.
- **In The efficient optimization process.**
	-

- **simulate** $q(P; \theta)$ using the mappings $\rho(\cdot)$ and $\phi(\cdot)$:
- **bring the gradient inside the expectation** by relaxing the mapping $\rho(\cdot)$ to $\psi_{\tau}(\cdot)$:

 $\nabla \mathbb{E}_{\epsilon \sim q(\epsilon)} f \left(\psi_\tau (\phi(A + B \epsilon)) \right) = \mathbb{E}_{\epsilon \sim q(\epsilon)} \nabla f \left(\psi_\tau (\phi(A + B \epsilon)) \right).$

$$
\psi_{\tau}: SO(n) \to \mathcal{M}_{\mathcal{P}}
$$

$$
O \mapsto \rho(O)D\left([\rho(O)D]^{\top}O \right)^{\tau} D^{\top}.
$$

(2)

Details of Step I

Detailed Equation (1)

- map a vector $A \in \mathbb{R}^{\frac{n(n-1)}{2}}$ to a skew-symmetric matrix $A A^{\top} \in \mathfrak{so}(n)$.
- $\exp(m(A A^{\top}) \in SO(n)).$

 \blacktriangleright The following theorem indicates that each orthogonal matrix in $SO(n)$ can be represented by a vector in $\mathbb{R}^{\frac{n(n-1)}{2}}$ $\frac{2}{2}$, with each representation being uniquely defined within set U , provided it exists there.

Theorem 1 in the paper

The mapping $\phi(\cdot)$ is differentiable, surjective, and it is injective on the domain $\mathcal{U} :=$ ${A \in \mathbb{R}^{\frac{n(n-1)}{2}} \mid \text{Im } \lambda_k(A - A^{\top}) \in (-\pi, \pi), \forall k}$ with $\lambda_k(\cdot)$ the eigenvalues. Additionally, the set $SO(n) \setminus \phi(\mathcal{U})$ has a zero Lebesgue measure in $SO(n)$.

Boundary issues

The permutation matrices may include -1 as one of their eigenvalues, with their corresponding representations precisely lying on the boundary of U . To avoid the optimization path to deviate from U , we propose **shifting the boundary of** U **to other eigenvalues** by left-multiplying the result of $\phi(\cdot)$ with an orthogonal matrix $B \in SO(n)$. Therefore, the representation of the permutation matrix P in U is changed from $\log m(P)$ to $\log m(B^{\top}P)$.

Details of Step II

Detailed Equation (2)

- find the permutation matrix $\rho(O) := \arg \max_{P \in \mathcal{P}_n} \langle P, O \rangle_F$ closest to O . • map *P* and *O* to the tangent space T_P SO(*n*) for linear interpolation, and then map the interpolation result back to $SO(n)$, given as
	- $\widetilde{O} = P \exp(m(P^{\top} [\tau P \log m(P^{\top} O) + (1 \tau) P \log m(P^{\top} P)])$ $= P(P^{\top}O)^{\tau}.$

(3)

 $= PD$ of odd permutation P , with $D = \text{diag}(\{1, \ldots, 1, -1\}).$

Extend to odd permutations

Theorem 2 in the paper

The mapping $\psi_{\tau}(\cdot)$ is differentiable, surjective, and injective on each submanifold \mathcal{S}_P . Additionally, the set of meaningless points for $\psi_{\tau}(\cdot)$ has a zero Lebesgue measure in $SO(n)$.

• map a skew-symmetric matrix $A - A^{\top} \in \mathfrak{so}(n)$ to an orthogonal matrix

Parameterization for gradient-based optimization

Forward process. The orthogonal matrix *O* can be factorized as $O = Q \text{diag}(\{\lambda_1, \dots, \lambda_n\}) Q^{-1}$, and then the matrix power O^{τ} can be computed by $O^{\tau} = Q \text{diag}(\{\lambda_1^{\tau}\})$ $\{\tau_1^{\tau}, \ldots, \lambda_n^{\tau}\}$) Q^{-1} . Backward process. Given $\tilde{O} = \psi_\tau(O)$, there exists a unique orthogonal matrix $W_\tau = \tilde{O}O^\top$ such that $\ddot{O} = W_{\tau}O$. In this way, the forward pass is streamlined into $\ddot{O} = W_{\tau}O$, thereby rendering the

backward pass highly efficient, as it only involves one linear transformation.

Re-parameterization provides stochastic optimization

min $\mathbb{E}_{P\sim q(P;\theta)}f(P)$.

 $P \sim q(P; \theta) \Longleftrightarrow P = \rho(\phi(A + B\epsilon))$ with $\theta := \{A, B \in \mathbb{R}^{\frac{n(n-1)}{2}}\}$ $\left\{\frac{a}{2},\frac{b}{2}\right\}$.

Experiments

\blacktriangleright Finding mode connectivity

Table 1. ℓ_1 -Distance and Precision $(\%)$ of algorithms across different network architectures.

 \blacktriangleright Inferring neuron identities

Table 2. Marginal log-likelihood and Precision (%) of algorithms across different proportions of known

neurons.

